I. Alkaline DNA extraction in 96 well format

 Solutions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50mM NaOH</td>
<td></td>
</tr>
<tr>
<td>1M Tris-HCl pH 8.0</td>
<td></td>
</tr>
</tbody>
</table>

 Procedure

1. Grow ES cells in a 96-well TC plate to confluence. Store at -20 until use.

2. Bring to room temperature and add 50ul of 50mM NaOH to each well.

3. Agitate at room temperature for 10 minutes.

4. Transfer to a sterile 96 well reaction plate (gently scrape bottom and mix 3 times with pipette tips) and seal transfer plate with plate cover.

5. Heat at 95°C on thermal cycler with heated lid at 100°C for 10 minutes.

6. Bring to room temperature and carefully remove plate seal and add 20 ul of 1M Tris-HCl pH 8.0.

7. Reseal with new plate cover and briefly vortex (slow to fast to slow).

8. Centrifuge at 6K rpm for 2 minutes.

9. Store at -4°C until use or -20°C if storing more than a day.
II. Oligos and Taqman probes

Access to vector data

Access to clone specific vector and oligo data:

1. From http://www.KOMP.org type official gene symbol into search bar and click on correct gene symbol when list populates.

2. Click on the 7 digit project ID “VGXXXXX” relating to your order.

3. Use the “2,000 Bases Upstream” and “2,000 Bases downstream” to verify the KO junctions.

4. Blast this sequence and align against genomic contig to characterize wildtype sequence that would be replaced by vector or missing in the recombined allele.

5. Design a Taqman target system with 6FAM on 5’ of probe (TAMRA on 3’)

6. Design a Taqman reference system with VIC on 5’ of probe (TAMRA on 3’) from a single copy conserved endogenous gene (Primer Express, ABI)

7. Validate the two systems together by multiplexing and running both against a 2 fold DNA dilution series in triplicate for ~6 dilutions. The slope of ΔCt Vs. –Log[DNA] needs to be <0.1.
III Multiplexed Real-time PCR via Relative Cycle Threshold Method

Materials and equipment

<table>
<thead>
<tr>
<th>Taqman 2X Universal PCR Mix, ABI 4364340</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 well reaction plate with bar code, ABI 4306737</td>
</tr>
<tr>
<td>Optical adhesive cover, ABI 4311971</td>
</tr>
<tr>
<td>Snap-On Compression Pad, ABI 4333292</td>
</tr>
<tr>
<td>ABI 7900HT Realtime PCR system</td>
</tr>
</tbody>
</table>

Procedure

1. Bring DNA plates to room temperature.

2. Prepare the following realtime reaction mix in order (low lighting) and briefly vortex: (note the reference and target final concentrations may vary dependent on assay design)

<table>
<thead>
<tr>
<th>Components</th>
<th>per rxn</th>
<th>per plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix (2X)</td>
<td>12.5 ul</td>
<td>1,250 ul</td>
</tr>
<tr>
<td>biology grade H2O</td>
<td>10 ul</td>
<td>1,000 ul</td>
</tr>
<tr>
<td>Reference forward (20uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Reference reverse (20uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Reference VIC labeled probe (10uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Target forward (20uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Target forward (20uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Target FAM labeled probe (10uM)</td>
<td>0.25 ul</td>
<td>25 ul</td>
</tr>
<tr>
<td>Total Reaction Mix</td>
<td>24 ul</td>
<td>2,400 ul</td>
</tr>
</tbody>
</table>

3. Transfer 24ul of reaction mix to each well of labeled 96 well reaction plate with bar code.

4. Carefully remove plate cover from DNA plate and transfer 1ul of DNA to each corresponding reaction plate (in duplicate).

5. Seal top with optical adhesive cover and snap on compression pad for automated handling (if more than one plate).

6. Briefly vortex to mix (slow to fast to slow).

7. Transfer sample location data as Tab-delimited text for each plate onto a jump drive (ABI specific software).
8. Open SDS2.2.1 (ABI) on ABI 7900HT and select Relative Quantification ($\Delta\Delta C_t$)

9. Scan the bar code and import data related to the particular plate for each plate in the study.

10. Designate the proper parameters for each reference and target system and designate the reference as ”endogenous reference” and set volume as 25ul.

11. Commence the following program on ABI7900HT for each plate and send to queue for automatic handling:

<table>
<thead>
<tr>
<th>Temp</th>
<th>Duration</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50^\circ C$</td>
<td>2 minutes</td>
<td>1x</td>
</tr>
<tr>
<td>$95^\circ C$</td>
<td>10 minutes</td>
<td>1x</td>
</tr>
<tr>
<td>$95^\circ C$</td>
<td>15 seconds</td>
<td>40 times</td>
</tr>
<tr>
<td>$60^\circ C$</td>
<td>1 minute</td>
<td></td>
</tr>
</tbody>
</table>

IV. Data Analysis

Procedure
1. Export all plates for analysis onto jump drive

2. Open SDS.2.2.1 (ABI) and select Relative Quantification (ΔΔCt) Study.

3. Add all plates in the study from jump drive and click Analyze.

4. Go to Analysis Settings and set Cycle Threshold to AutoCt. (if this provides poor data separation then manually set the Ct to optimal location and select automatic baseline).

5. Export the Results Table (tab-delimited text).

6. In Excel, open the Results Table

7. Graph the Average ΔCt values on Y axis and look for data separation of 1 Ct (indicating a 2 fold difference).

8. Take the average of the wild type population (lower ΔCt) and add 1 Ct value to attain expected heterozygous ΔCt.

9. Homologous recombination candidates will fall into the larger ΔCt population.

10. Expand candidates for Southern confirmation.

Example Data Separation

![Graph showing data separation]

Loss of Native Allele

-2
-1
0
1
2

ΔCt

ΔCt

Wild Type
(2 copy)

Targeted
mutant
(1 copy)